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ABSTRACT 
 
Many applications need methods for handling missing or 
insufficient data. This paper applies a correlation technique 
to improve the fallback methods previously used to handle 
the paucity of keystroke data from the infrequently used 
keys in a keystroke biometric system. The proposed 
statistical fallback model uses a correlation based fallback 
table based on the linear correlation between pairs of keys. 
Two large long-text keystroke databases are used in the 
study – one to construct the model and the other to evaluate 
system performance as a function of sample length.  
 
Index Terms— Behavioral biometrics, Correlation, 
Keystroke, Linear regression 

 
1. INTRODUCTION 

 
A number of applications need methods for handling 
missing or insufficient data. In speech and language 
processing, several methods of handling missing or sparse 
data are described in [2]. The N-gram model of missing or 
infrequent data is estimated based on the (N−1)-gram model 
of sufficient data recursively in the back-off [3] and deleted 
interpolation [4]. Although both models fail if the unigram 
is missing, this occurs rarely. 
In this study, a correlation technique is proposed to handle 
insufficient keystroke data. The keystroke biometric is a 
behavioral biometric that has gained contemporary 
popularity as the keyboard provides a vital input device. 
Keystroke biometric systems utilize the keystroke dynamics 
as features or measurements [1]. The usual keystroke 
dynamic measurements are the dwell (key press duration) 
and flight (transition between two keys) times. In contrast to 
password input, which is fixed, long-text input samples can 
consist of several hundred keystrokes of varying frequency. 
Therefore, keystroke biometric systems operating on such 
input can use statistical features such as the mean and 
standard deviation of the dwell and flight times [6]. These 
measurements, however, suffer from poor estimates of those 
keys where the number of samples during an acquisition 

session is missing or insufficient. 
Inspired from the language processing “back-off” 

models, two hierarchical fallback tree models were 
evaluated for use in a keystroke biometric system. These 
hierarchical tree models served two functions. First, they 
provided fallback to additional data when insufficient 
keystroke instances were available to compute the statistical 
features. Second, they provided a granularity of features, 
where the granularity increases from gross features at the 
top of the tree to fine features at the bottom. The first 
hierarchical model, called the ‘linguistic’ model, organizes 
keys based primarily on frequency of use [5, 6]. The second 
model, called the ‘touch-type’ model, groups keys based on 
the fingers used to strike keys by touch typists [6]. These 
linguistic and touch-type models are depicted in Figure 1 (a) 
and (b), respectively.  
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(a) Linguistic Hierarchy Model 

 

 
(b) Touch-type Hierarchy Model 

Figure 1: Two previous fallback models 



An early analysis of the fallback aspect of the two 
models found the linguistic model to be slightly better than 
the touch-type model [6], although different features were 
used in the comparison since the models served two 
different functions. Compared to a default model of simply 
falling back to the top node of the hierarchy tree, the 
linguistic model reduced the error rate by 26% and 53%, 
respectively on two datasets, showing the utility of the 
hierarchy tree for the fallback function. These datasets 
contained samples of 500 or more keystrokes. Fallback 
never occurred more than one level up from the leaf nodes 
and most of the one-level-up nodes were never used (vowel, 
frequent consonant, all letters, non-letters) because their leaf 
nodes were sufficiently frequent to not require fallback. 

In this study, the two functions of the hierarchy tree – 
feature granularity and fallback – are separated. The 
hierarchy trees are retained for feature granularity and a 
sounder statistical model, called the correlation-based 
fallback table model, is proposed for fallback. 

Two large independent long-text keystroke databases 
are used in this study. The first database is used to construct 
the correlation-based fallback table model. The second is 
used to evaluate system performance as a function of sample 
length. The new correlation fallback model should show 
improvement over the earlier models, especially as the data 
becomes sparser (fewer keystrokes per sample). 

The concept of correlation plays important roles in 
many aspects of pattern recognition [7]; it can be modeled as 
an ultimate goal to optimize while it can be a serious 
problem to mitigate. In keystroke biometric, the problematic 
side of correlation between feature variables was addressed 
in [8,9] to justify their choice of Mahalanobis distance over 
Euclidean distance. Here we focus on the useful side of 
correlation for estimating better feature values of sparse 
keystroke dwell data. 

The rest of the paper is organized as follows. In section 
2, correlations between key dwell values are studied and the 
three correlation parameters are discovered from a large 
representative keystroke database. Section 3 presents the 
algorithmic use of correlation between key dwells for the 
keystroke biometric. Finally, section 4 concludes this work. 

 
2. CORRELATIONS OF KEY DWELLS 

 
The ith keystroke of a user is denoted as Ai and consists of 
three tuples: key value, pressed time, and released time: Ai = 
(ki, pi, ri). The dwell is the duration of a key pressed and a 
set of samples of dwell of a certain key x is defined in (1).  

Assuming that samples in Sx follow the normal 
distribution, the mean µx and standard deviation σx of Sx are 
often used as dwell features to represent a keystroke 
biometric sample [5,6]. According to the fundamental 
theorem in probability called ‘law of large numbers’ [10], 
the larger number of dwell information for a certain key, the 
closer the mean feature to the user’s habitual expected value. 
However, the estimated µx and σx may be unreliable if the 

size of Sx, |Sx| is too small. 
 

 
Figure 2: Acquisition of Keystroke Durations. 

 
Sx = { ri − pi | (ri, pi, ki) ∈A ∧ ki = x} (1) 

 
Hence, linguistic [5] and physiological [6] hierarchical 

fallback models were used to mitigate this data insufficiency 
problem. If a certain key x occurs infrequently, i.e., the set 
size |Sx| is less than t, the user defined threshold, the fallback 
procedure as defined recursively in (2) was used to increase 
the number of samples; Sx = fallb(x). 
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Figure 3: The average frequency of alphabet keys. 

 

fallb(x) =
{ri ! pi | ki " leaf (x)} if | Sx |> t
fallb(parent(x)) otherwise

#
$
%
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 (2) 

 
Poor correlations between parent and children nodes in 

the previous hierarchical models and the most correlated 
keys to each key are revealed from a keystroke database. 
The database contains 1666 sessions from 43 users with an 
average of 38 sessions each, where each session length has a 
maximum of 500 keystrokes; and the session length is 495 
on average. The data was collected from university students 
who took 4 online exams over a semester. Each session is 
approximately one question, with a total of 10 questions in 
each exam. Not all of the students completed the exam 
successfully, resulting in some missing sessions. Average 
frequency of each alphabet key in the database is given in 
Figure 3, which is astoundingly similar to that in common 
English published in [11]. This similarity justifies the 
representativeness of the keystroke database. 

The database is represented as a table R as given in 
Figure 4 where each row represents a session and column 
represents the average key dwell and its frequency value, 
which is parenthesized. Prior to the correlation analysis, the 
preprocessing consists of extracting a sufficient co-exist 



table of two keys with a user defined threshold, t1, is defined 
in (3) and illustrated in Figure 4. 
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Figure 4: Extracting sufficient co-exist table with t1 = 7. 

 
The table Dx,y, not R, is used to derive the correlation 
between x and y. Let nx,y = |Dx,y| be the size of instances and 
the Pearson product-moment correlation coefficient, ρx,y is 
defined in (4). A value of ρx,y closer to 1 indicates better 
correlation between two keys. 
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(a) Good correlation 

(0.908) b/w D and E 
(b) Bad correlation 

(0.561) b/w A and I 
 

 
(c) Correlations among vowels 

Figure 5: Correlation Plots b/w pairs of key dwells  
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(4) 

 
Figures 5 (a) and (b) are examples of good and bad 

correlated cases, respectively. Figure 5 (c) shows 
correlations of all pairs of vowels {a, e, i, o, u}. Upper right 
and lower left triangles contain the mean and standard 
deviation value plots for each pair of vowels. Even after 
outlier remover, the standard deviation distribution did not 
form a linear correlation. 

Table 1 shows the best four keys that correlate to each 
key. . It should be noted that even though the key x 
correlates best with a key y, x is not necessarily the best 
correlating key for y. In all, it can be observed that 
majorities of keys correlate highly with other keys. Keys ‘E’ 
and ‘S’ have the highest correlation coefficient value and are 
one of the only two keys which are symmetrically correlated 
(the other being ‘N’ and ‘O’). Letters like {‘Q’, ‘X’, ‘Z’} 
are not frequently used and thus do not correlate well with 
others  

 
Table 1. Correlation Coefficient-based Fallback Table. 

  1st Choice 2nd Choice 3rd Choice 4th Choice 
A S 0.847 T 0.818 E 0.801 R 0.760 
B T 0.555 H 0.527 D 0.520 S 0.518 
C T 0.797 S 0.772 E 0.763 R 0.754 
D E 0.773 T 0.759 S 0.750 C 0.715 
E S 0.876 T 0.835 R 0.826 A 0.801 
F T 0.740 E 0.708 R 0.692 S 0.690 
G T 0.707 E 0.649 R 0.641 S 0.629 
H N 0.803 I 0.760 U 0.748 T 0.744 
I N 0.809 O 0.804 T 0.771 H 0.760 
J U 0.407 I 0.400 O 0.386 P 0.374 
K O 0.577 L 0.558 I 0.546 N 0.544 
L O 0.775 T 0.720 S 0.719 I 0.716 
M N 0.789 O 0.729 U 0.724 I 0.723 
N O 0.833 I 0.809 H 0.803 U 0.790 
O N 0.833 I 0.804 U 0.777 L 0.775 
P H 0.600 I 0.599 O 0.595 U 0.587 
Q E 0.596 S 0.594 T 0.592 A 0.574 
R T 0.849 E 0.826 S 0.796 A 0.760 
S E 0.876 T 0.860 A 0.847 R 0.796 
T S 0.860 R 0.849 E 0.835 A 0.818 
U N 0.790 O 0.777 I 0.759 H 0.748 
V E 0.581 T 0.562 S 0.559 R 0.541 
W E 0.775 S 0.771 T 0.742 A 0.710 
X E 0.538 T 0.529 R 0.510 S 0.504 
Y T 0.595 E 0.569 S 0.569 R 0.551 
Z E 0.460 A 0.445 T 0.443 S 0.433 

 
Figure 6 shows a plot of key frequency and the first 

choice correlation coefficient. The correlation coefficient 
decreases for infrequently used keys. This suggests a 
limiting factor in the effectiveness of the regression model, 
since correlations with other keys are low and it is the 
infrequently used keys that usually must be accounted for 
small sample sizes. 



 
Figure 6: Max Correlation vs. Key Frequency. 

 
There are two other important correlation parameters 

that can be useful in the later fallback model. They are the 
slope, αx,y (6) and the intercept, βx,y (7) of simple linear 
regression line (5) that fits two correlating keystroke dwell 
variables. 
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These parameter values are given in Table 3 at the end of the 
article.  
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(a) 2-Feature space of keys D and E 

 

 
(b) Shifting from q (3.98, 4.16) to qc (2.47, 5.13) 

Figure 7: Proposed Scenario. 

3. CORRELATION BASED FALLBACK TABLE 
 

In the previous section, it was claimed and discovered 
empirically that most key dwell mean 
values having high correlation with other keys. This section 
focuses on how to utilize these discovered correlation 
parameters to better estimate the features.  

Figure 7 illustrates the essence of our claims. Suppose 
that there are four users and each user provided five mean 
feature values as plotted with its linear regression line in 
Figure 7 (a). Consider a query session, q, which claims to be 
a user 2. Only three and four samples appeared for the keys 
‘D’ and ‘E’, respectively. The computed mean values q = 
(3.98, 4.16) are poor estimates.  

In this infrequent case, the most correlating key dwell 
values may be summed to compute the new mean value. As 
illustrated in Figure 7 (b), the linear regression line can be 
utilized to convert the value. This new mean value 
augmented with linearly transformed highly correlating key 
dwell values is denoted as qc = (2.47, 5.13) and we claim 
that this is a much better estimate as depicted in Figure 7 (a).  

If the linear regression line is not used but the other key 
dwell values are directly augmented, this will also result in a 
poor estimate which is denoted as qd = (4.08, 4.08). Previous 
hierarchical fallback models used direct values rather than 
linear transformed values.  

 
Sx={ri − pi | ki=x}

no

|Sx| > t

Sx = Sx − outliers

normalize
µ(Sx) & σ(Sx)

l = 0

l++

acquisition

augmenting

removing
outliers

normalizing

Sx,l → Sx,l

R

no

yes

yes

features

Sx = Sx∪ Sx,l

outliers 
= ∅

 
Figure 8. Flow chart of proposed correlation-based fallback table 

model 
 
Sx,l = {!x,l (ri ! pi )+"x,l | (ri, pi,ki )" A#ki = kx,l}  (8) 

 
Figure 8 shows the flow chart of the proposed model 

that utilizes the correlation information R discovered in the 
previous section. The rows of R are alphabet keys containing 
the sorted other keys in descending order of correlation 



coefficient where each key has four tuples, (kx,l, αx,l, βx,l, γx,l) 
denoting the lth rank key, slope, intersect, and correlation 
coefficient for the key x, respectively. Let Sx,l defined in (8) 
denote the set of linearly transformed values, for example in 
Figure 7 (b), S‘E’,1 = {5.23, 5.37, 8.68} is transformed from 
S‘E’ = {2.43, 2.61, 6.91}. 

The proposed correlation based fallback table model is 
defined in (9) as a recursive function, cft. It is called 
initially, Sx = cft(Sx, 0) with the user defined threshold for 
the minimum number of observations.  

 

cft(Sx, l) =
Sx if | Sx |> t

cft(Sx!Sx,l, l +1) otherwise
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(9) 

 
It should be noted that (9) is imperfect. It can be infinite 
when the size is never greater than t or undefined if there are 
no more keys available. Yet it gives the succinct definition 
of the proposed system.  

If the alphabet 'A' appears sufficiently enough, i.e., 
above the user defined threshold t, we just use the feature 
set. If not, use the linear regression function in the first 
choice, i.e., 'E' for 'A'. If |S‘A’ ∪ S‘A’,1| are sufficient, use 
them for the feature value for S‘A’. 

The system was tested on a population of 30 users with 
a total of 400 sessions. Each user recorded between 10 and 
25 sessions and each session contained between 500 and 
1000 keystrokes. The samples were recorded over a 
semester and the population consisted mainly of university 
students. For each session, users were instructed to respond 
freely to essay-type questions. 

Four different fallback models were evaluated with the 
same feature set. The features consist of the mean and 
standard deviation of each letter key, for a total of 52 
features. Using only the 26 letter keys, a linguistic, 
physiological, regression, and default one-level model were 
used. The linguist and physiological models are subsets of 
the trees in Figure 1 containing only the relevant letter 
nodes, and the default model falls back to all letter keys 
when there are insufficient samples. A threshold value of 
t=5 was empirically chosen so that the number of 
infrequently used keys decrease as the number of keystrokes 
increase. 

Each session was truncated at various intervals from 50 
to 500 keystrokes to get the EER as a function of input 
length for each model. Figure 9 shows the equal error rate 
(EER) for each type of fallback model as a function of input 
length. Table 2 contains the EER values of each model at 
each input length. 

 
Figure 9. EER of each fallback model as a function of |Sx| 

 
Table 2. Fallback Model EER Table. 

|Sx| Default Linguistic Physiologic Regression 
50 22.88 22.60 21.80 20.47 
100 17.34 18.06 16.37 17.84 
200 11.80 12.36 11.00 11.34 
300 9.74 9.51 8.60 8.50 
400 7.52 6.93 7.56 6.52 
500 6.80 6.62 6.54 6.15 
Max 4.54 4.86 4.70 4.31 

 
4. CONCLUSIONS 

 
The linear regression model offers modest improvements 
over the linguistic and physiological model with the 
exception of two different input sizes. This may be a result 
of the regression model having a higher number of fallbacks 
for the shorter input lengths than the hierarchical models, 
which rarely fall back beyond the first level. Features for 
infrequently occurring keys are more likely to “run out of 
data” quicker in the regression model, since each level 
contains only a single key. Calculating an accurate and 
useful linear regression model requires large amounts of 
data since its purpose is to effectively handle low occurring 
keystrokes. In general, the keys with the lowest frequency 
also have the weakest correlation with other keys, which 
limit the effectiveness of any fallback model. With modest 
improvements in accuracy, the novelty of this fallback 
method lies in the potential applicability to datasets where 
domains specific information is not available. Previously, 
extending a linguistic or touch-type fallback hierarchy to 
other languages and locales would require a hierarchy for 
each application. Using a correlation-based fallback only 
requires additional data to create the fallback table and 
linear regression functions. 

Parent nodes in previous fallback models in [2,3] played 



not only the substitute role for insufficient keys, but also 
global feature roles. Separating these two functions allows 
for greater flexibility in choosing features and a particular 
fallback model. 

Correlation attributes (alpha beta gamma) among 
different key dwells are used to estimate any infrequent key 
dwell mean value. These attributes within a user may be 
utilized as distinctive features for verification purpose and it 
remains as a future work. The correlation between groups of 
keys and flight times were also not considered in this study 
and may play a role in a complete regression fallback 
method. 
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Table 3. Linear regression functions for each key 

 


